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Abstract-A new characteristic equation for cylindrical shell roofs is developed, together with a
method for obtaining the solution and its derivatives. Post tension is introduced into the edge
beam by shearing forces varying linearly from a maximum at the transverse to zero at the
quarter points. The Fourier series for this converges rapidly. An end correction is then made to
restore the post tension to the end of the edge beam and obtain compatibility of strain with the
shell edge. The method is compared with experimental results on a model shell and with the
results of a finite element program.

u, v, w
Nx,N""S
Ex, E"" yx",

Mx,M""Mx'"
Qx, Q",
V",
x (ft), eP (rad)
a
R,L,h
ePK
E
v
D
N
m
k,B
4K4

p
A (ft2), I (ft4)
P
T
t

NOTATION
Longitudinal, circumferential, radial displacements, ft
longitudinal, circumferential, shearing forces, lb/ft
longitudinal, circumferential, shearing strains
longitudinal, circumferential, twisting moments, lb
normal shearing forces, lb/ft
normal force at edge, lb/ft
longitudinal, radial coordinates,
angular rotation of shell, rad
radius, length, thickness of shell, ft
half angle of shell, rad
Young's modulus, Ib/ft2

Poisson's ratio
flexural rigidity of shell, lb ft
integer in Fourier series term
NTfRIL
parametric constants
12(1 - p')R2Ih'
a root of the characteristic equation
area, moment of inertia of edge beam
post tension load in edge beam, lb
torque on edge beam, lb ft
force at springing due to shear, lb.

INTRODUCTION

Cylindrical shell roofs are used to provide an economical way of covering large areas
without intermediate supports. The first cylindrical shell of the type shown in Fig. I was
built in Germany in 1925. The number of these structures now in existence is very large.

The shell is constructed in reinforced concrete about three inches thick. This gives
sufficient cover to protect the reinforcement. The main loading is the self weight of the shell
and a layer of snow. Wind blowing across the shell produces a uniform uplift and can
normally be neglected.
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Fig. 1. Cylindrical shell roof.

Edge beams are provided to stiffen the edges of the longer shells and these edge beams are
frequently post-tensioned to reduce the amount of reinforcement required in the shell.

The traverses are thin and the assumption that they do not present any resistance to
horizontal movement enables a linear differential equation to be developed for the deflection
of the shell. Fliigge[1] has developed this differential equation with the minimum of approxi
mation. As he points out, the mathematical manipulation of such a system is far from
simple. The roots of the auxiliary equation arising from Fliigge's equation are difficult to
extract accurately and the force-deformation relations are very complicated.

This paper shows how Fliigge's equation can be simplified without serious loss of accuracy
using Ferrari's method for the solution of a quartic. The simplified equation has explicit
roots which can be readily employed in the design of shell roofs.

The gravity loading of a cylindrical shell roof can then be handled on a small digital
computer by using a sufficient number of terms of the Fourier series for the loading.

Attempts have been made to determine the stresses due to post-tension in a similar
manner[2]. However in this case the errors increase with the number of terms employed.
The difficulty is due to the assumption that the traverses cannot transmit any of the post
tension directly to the shell. Compatibility of strain between the edge beam and the shell
becomes impossible to obtain close to the traverses. When the assumption is abandoned it
becomes possible to handle the post tension in an economical manner.

THEORETICAL ANALYSIS

The characteristic equation

In a cylindrical shell the displacements vary with both x and <p. It will be assumed that the
shell does not move radially at the traverses. It will also be taken initially that the traverses
offer no resistance to horizontal displacement. The differential equation of the shell can then
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be handled by taking the radial displacement as

w Aep<j> cos mxlR
where
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m = NnRIL.

All forces and displacements in the shell then appear in terms of a Fourier series in x.
The auxiliary to Fli.igge's equation becomes

(p2 _ m2)4 + 4m4K 4 + 2p6 + Fp4 + Gp2 - 2vm2 0 (1)

where
4K4 = 12(1 - v2 )R2 jh2

F 1 - 2(4 - v)m2

G 6m4
- 2(2 - v)m2

•

The auxiliary is a quartic equation in p2 and the coefficients can be tabulated as follows:

p8 p6 p4 p2

-4m2 +6m4 -4m6 m8

2 +F +G +4m4 K4

-2m6 v

2a b 2c d

What happens next can best be shown by putting in numbers for a typical case. Using the
dimensions of Gibson's long shell[3], R = 30 ft, h = 0·25 ft, L = 120 ft and v = 0'15, and
taking the first term of the Fourier series N = 1, m = nj4 and 4K4 168912.

The table then becomes

p8 p6 p4 p2

-2-4674 +2-2830 -0,9388 +0-1448
+2 -3-7497 +0-0006 +64271'185

-0-0704

-0'4674 --1,4667 -0,9382 +64271'259

To solve the quartic

p8 + 2ap6 + bp4 + 2Cp2 + d = 0

it will be assumed possible to express it as the difference of two squares

(p4 + qp2 + r)2 _ (Sp2 + t)2 = 0
or

p8 + 2qp6 + (q2 + 2r + S2)p4 + 2(qr _ st)p2 + (r 2 _ (2) = O.

On comparing coefficients

(2)

q =a;
qr - st C',

q2 _ 2r - S2 = b;

r2 - (2 = d.
(3)
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Eliminating sand t and substituting for q we obtain the cubic equation

Putting in the numbers for our typical case the cubic becomes

r 3 + 0'7335r 2
- 64271'1497r 4888·2214 = 0

(4)

(5)

d is much larger than the other numbers in equation (4) and assuming that r has a small real
value it is evident from inspection that r will be very nearly equal to !(b - a)2 or
-0,760668. Evaluating (5) on a desk computer for trial values of r shows that the correct
value of r is -0,760671.

Now (2) can be expressed as:

(p4 + qp2 + r2) + (Sp2 + t) = 0

and

or

p4 + (q + S)p2 + (r 2 + t) = 0

and

d) = 2m2 K2 i as r2 is negligible compared with
(qr - c)jt which is very small compared with q,

p4 + (q _ S)p2 + (r2 - t) = O.

Transposing (3) it is found that t = j(r2

d which is very nearly equal to 4m4 K 4
. S

and r 2 is very small compared with t.
The two quadratic equations in p2 (6) then reduce to:

(6)

p4 + ap2 + t = 0

p4 + ap2 - t = 0

hence

The imaginary part under the square root is much larger than the real so that

p2 = _ ~ ±mK(jil) = -1 + m2 + mK(±l ± i).

This can be compared with the roots for Schorer's equation:

p2 = mK(±l ± i)

(7)
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and with those of the widely used D.K.J. equation:

p2 = m2 + mK(±l ± i).
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[4]

It will be seen that for long shells, i.e. where m2 < Ij2 the roots of Schorer's equation are
more accurate than those of the D.K.J. equation.

If the factors in Table 1 that do not contribute towards (7) are eliminated we are left with
the auxiliary equation:

which corresponds to the dimensional characteristic equation

(8)

Before (8) can be used in design it is necessary to find the force-deformation relations cor
responding to it. This was done by working back through Fltigge's calculations and leaving
out any terms that did not lead to the desired characteristic equation.

It appeared that M x could be neglected as in Schorer's equation but not the twisting
moment. That 13", could be considered small compared with wjR and ovjR o¢ but that
'Yx'" could not be neglected when compared with oujR o¢ and ovjox. Other approximations
leading to the desired result were the ignoring of vN¢ compared with Nx in the calculation of

. DO - v) 02W
ex, the takmg of M x", as R o¢ ox and M", as - DX", . In general the method leads to

the inclusion of first and second order terms and the neglect of higher order terms.

~X'lI

Z,W ¢,v
Ox o.p

M.px
f\

Fig. 2. Statics of element.
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From the statics of the element in Fig. 2

Q _ aM", _ oMx '"

'" - R o¢ ax

Qx= - ~:;

N", __ oQ", _ R oQx
oep ax

0
2

Ai", a2
M x'"

= - R 8¢2 + 2 o¢ ox

oS aN", Q",
oX = - Rc¢ +/i

03M", 2 03Mx", oM",
= R2 Oep3 - R0¢2 ox + R2 o¢

oNx 1 oS
-=---
ox Ro¢

02Nx 1 0 (OS)
0¢2 = - R3¢ ox

184M", 2 c4Mx", 1 02M",
- R3 Oep4 + R2 O¢3 ax - R3~.

The force-deformation relations are:

OU Nxe =-=-
x ex Eh

e", = ~ (:; - w)
this is considered small compared with the separate components on the R.H. side which are
due mainly to bending

iJv
W=-

iJ¢

OU OV S 2(1 + v)
Yx", = R o¢ + 8x = Gh = Eh S

a4 w 05 V (l + v) a4s a5u
- - -- - 2---- - ------"-.,,.
ox4 - o¢ ax4 - .t,n a¢ ax4 R a¢2 ax3
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1 04Nx

EhR 0¢2 ox2

1 { 06M4> 206Mx 4> 04M4>}
EhR - R 3 O¢6 + R2 C¢5 ox - R3 0¢4

D {I (0
8

11' 0
6

11') 2(1 v) 0
8

11' }
EhR R5 O¢8 + 2 0¢6 + R3 0¢6 OX2

0811' 06W 0811' 12(1 - v2)R6 04W

0¢8 + 2 0¢6 + 4R
2

O¢6 ox2 + h2 ox4 =0.
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This is the same equation as (8).
The radial deflection in the shell will now be taken in the form

11' = Wcos mxjR = Wcos NnxjL

where W is a function only of ¢.
The deformations and forces at the centre of the shell where x = 0 can be expressed as

derivatives of Wwith respect to ¢. The values elsewhere can be obtained by multiplying by
cos mxjR

(9)

Now W = AeP4> where A and P have eight complex values. Before we can tackle the design
of the shell roof we have to be able to extract Wand its derivatives in terms of real constants
and quantities. A simple method of doing this will now be outlined.

TO OBTAIN THE DERIVATIVES OF A SOLUTION TO A
LINEAR DIFFERENTIAL EQUATION

Two terms of the solution will be taken in the form:

W = A I ePl 4> + A2 eP2 4>

where

PI = P+ ai P2 = P- ai.
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Then
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d"W/d</>" = A1Pl"eP1 <P + A2P2"eP2<P.

It is always possible to express Pas k cos 8 and a as k sin 8. Now

ei~<P cos a</> + i sin a</>
and

(k cos 8 + ik sin 8)" = kn(cos n8 + i sin n8)

from DeMoivre's theorem.

d"W/d</>" = A 1(P + ai)neP<Pe~i<P + A 2(P - ai)"eP<Pe-ai<P

= A 1k"(cos n8 + i sin nO)eP<P(cos a</> + i sin a</»

+ A2 k"(cos n8 - i sin nO)eP<P(cos a</> - i sin a</»

= k"eP<P{[(A l + A2)cos nO + (AI - A 2 )i sin n8]cos a</>

+ [-(AI +A2)sinnO+(Al -A 2 )icosn8]sina</>}.

Putting Al + A2 = Cl and (AI - A2)i C2

d" W/d</>" = k"eP<P{(Cl cos nO + C2 sin nO)cos a</> + (- CI sin nO + C2 cos nO)sin a</>}.

In matrix form this is conveniently put as

Ul[ il . il] P<P [ cos a</> sin a</>] [CI] A B
K cos nu sm nu e sin a</> cos a</> C2 or..C.

where A depends on the order of the derivative, B the angular position in the shell, and Cis
the vector containing the constants of integration.

DEVELOPING THE PROGRAM

The roots of the simplified Fltigge equation form two sets

(1) p 2 = -1- + m2 + mK ± mKi = RI ± mKi

(2) p 2 = 1+ m2
- mK ± mKi = - R2 ± mKi.

We shall take first the first set with the positive imaginary part.

k/(cos 281 + i sin 2(1) = R1 + mKi

tan 201 = mKIR1 or 81 =! arctan(mK/RI)

k 1
4 cos2 281 = R/

k l
4 sin2 201 = m 2K 2

k 1
4 = R 1

2 + m2K 2

k I = V"(R 1
2 + m2K 2).

Taking now the second set with the positive imaginary part

tan 282 = -mKIR2 82 = t(n - arctan mK/Rz)

k 2 = V(R/ + m2K 2).
Then

PI = k l cos 81

P2 = k 2 cos 82

(XI = k 1 sin (Jl

a2 = k 2 sin O2.
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The matrices for the derivations can now be set out as follows:
A will be an 8 x 8 matrix with rows corresponding to the n values required (- 1 to 6)

and columns having the values

kIn cos nOI kIn sin nOI (-kl)n cos nOI (-kl)n sin n01 k 2
ncos n02

B will also be an 8 x 8 matrix as follows

BI 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4

BI = ePt 4> [ cos iXIcP sin iX1cP ]

sin iXIcP cos iX1cP

B = e-Pt4>[C?S iXIcP sin iX I cP ]
2 sm iX1cP cos iXIcP ,etc.

C will be a 1 x 8 column matrix containing the eight constants of integration Cl ... C8.
A new 8 x 8 matrix D is now produced, the row number corresponding to the order of the

highest derivative in the expression for the shell displacement or stress. This is done by
employing equations (9).

For j having the values 1-8

D_ Ij = A-u v

DOj = A Oj IV

D
D2j = - R 2 (A 2j + Ao) M4>

D
D3j = - R3 (A 3j + K I AI) V4>

D
D4j = R 3 (A 4j + K 1A 2j) N4>

D
D Sj = - R4 (A Sj + K 2 A 3 ) dS(dx

D
D6j = - R3 m2 (A6j + K 2 A4 ) Nx

where

and
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(10)

(11 )

STRESSES DUE TO POST-TENSIONING

The handling of the gravity loading of the shell is too well known to require repetition
[2, 5]. However the usual method of replacing the post tension by the Fourier series

4px I Nrr Nrrx- L -sin -cos--
7[ N=1,3,5 ... N 2 L

leads to serious difficulties.
This is due to the shear at the edge of the shell being proportional to the rate of change of

the force in the edge beam, or the differential of (10) which can be seen to oscillate with
increasing number of terms near the centre of the shell and diverge near the traverses
(Fig. 3a).

A more satisfactory series is obtained by assuming that the post tension is fed into the
edge beam by shearing forces decreasing linearly from the traverse to the quarter points.
This produces the parabolic distribution of post tension shown in Fig. 3(b).

The Fourier series for this is

Nnx if.; 128P (Nn Nn) NnxLPN cos -- = L --)3 sin - - sin -4 cos --.
L N= 1,3,5 ... (Nn 2 L

Four terms of this series summed up on a desk computer showed almost perfect agreement
with the curve chosen and can be differentiated without much loss of accuracy.

P 1--+---300...--

4terms of(IO)

LIZ

x

o

p 1------:::iI""-------I

x
o

Fig. 3. Fourier series for post tension.
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ANALYSIS OF SHELL WITH TUBULAR EDGE BEAM

The theory was tested on the model shell with a tubular edge beam described in the next
section. In this special case the stresses and deformations are produced only by the post
tensioning, there being no gravity loading on the shell. The boundary conditions for the
model shell can be expressed fairly simply as follows:

The B matrix is calculated for the right hand edge. This is multiplied by the D matrix to
give matrix E (8 x 8) which relates to the shell displacements, moments and forces for the
right hand edge when multiplied by the C vector. The numerical values for the boundary
conditions are put in the G vector.

The four boundary conditions for the right hand edge can then be put into the first
four rows of matrix F (8 x 8) and vector G (8 x 1) as follows:

(1) The rotations of the shell edge and the edge beam are equal. Reference to Fig. 4(a)
shows that

dT Nnx
dx = (M4> + bN4»cos L
da T
-=--
dx GJ

1 If Nnxa = GJ (M4> + bN4»cos L dx dx

= (:n)2 dJ (M4> + bN4» at x = O.

Then for j having values from I to 8

Fli = Eli - (:n) 2 GIJ (E2i + bE4j)

GI =0.

(2) The radial displacements w of the shell and the edge beam are equal. Reference to
Fig. 3(d) shows that

dt = Sdx

t = Jf:~ dx dx at x = 0

__ (L )2dS
- Nn dx'

For the edge beam
d4 w Nrcx

-EI
d

4 = V4> cos--
x L

d
2

w { (L )2 } NnxM= -EI-2 = - - V4> + tb cos--
dx Nn L

I (L )2{( L)2 (L )2 dS}
w = - EI Nn Nrc V4> + b Nn dx

USS Vol. 10 No. 9-H
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Fig. 4. Element of tubular edge beam.

(3) The tangential displacements v of the shell and the edge beam are equal.

d4 v Nnx
EI- = -N... cos-

dx4
0/ L

F3j = E_ 1j + ;/ (~1trE4j

G3 O.

(4) The longitudinal strains of the shell and the edge beam are equal. The strain in the
edge beam is

due to the longitudinal force. The strain in the edge beam at the springing due to bending is

dZw (N1t)Z
-bdxz=b y watx=O.
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The strain in the shell at the springing is

1 (N
EI x

1047

The B matrix is then recalculated for the left hand edge. A new E matrix is produced by
multiplying B by D. The second half of the F and G matrices can then be filled in a similar
manner to the first, making allowance for some sign differences.

The eight simultaneous equations represented by FC = G are solved to find the integration
constants C. The shell stresses and displacements can then be calculated from D.B.C., the
change in angular position modifying only B.

CORRECTION AT CORNERS OF PRESTRESSED SHELL

The boundary conditions assumed in the foregoing analysis imply that Nx is zero at the
traverses. This means that compatibility of strain cannot apply at the ends of the edge
beam where the strain is the greatest.

It is evident that the traverses can transmit some of the post tension and this is allowed
for in the following correction which is added to the previous solution.

It will be supposed that the post tension is returned to the corners of the shell by applying
shear forces S1 to the edge beam and S2 to the shell edge, both varying linearly from the
quarter points to the traverse. These will produce the parabolic variation of longitudinal
stress shown in Fig. 5 and will be apportioned to retain compatibility of strain.

821
p ..

~f
I

~
Traverse 1/4 pt

Fig. 5. Correction at corners of shell.
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The characteristic equation of the shell will be taken in its simplest form:

(12)

The longitudinal strain au/ax will vary with x 2

Equation (12) then reduces to (i SU/O¢8 = O. Then

au _ ('C .+,7 C.+,6 5 2
ax -. J't' + 2~' + C J ¢ ... Cs)x .

Assuming symmetry about the CLJ(r/» =f( - 4») and C J, C3, C5, C7 are zero. If the traverse is
fairly flexible in the x direction the forces produced by the end correction will die away
rapidly from the edge. It is also clear that only compatibility of strain with the edge beam is
of importance. The solution to (12) will then be taken as

(13)

If e is the longitudinal strain at the corners of the shell

N x = Eh¢6d6x2 /e = Ehr.¢6 at x = L/4.

Then

,'PK
P2=1 Nx Rd¢=EhRe¢/!7

. "
PI = EAe at x = L/4.

Then

(14)

from which e, PI and P2 can be calculated.

EXPERIMENT

A small steel model shell roof was constructed as shown in Fig. 6. Tubular edge beams
were soldered on to the edges of the shell. A steel rod was passed through one of the edge
beams and stressed by means of nuts screwed on the ends. Buckling was avoided by fixing
the tendon at the centre with set screws. The strains along the edge beam were measured
with eight pairs of Huggenberger tensometers.

The magnitude of the post tension was obtained from the strain of those portions of the
edge beam that extended beyond the shell.
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Fig. 6. Model steel shell with tensometers L = 36 in., R = 12 in., h = 0·031 in. Half angle
q,K= 40°, A -- 0·02112 in', b=0'17I5 in.
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COMPARISON OF THEORY WITH EXPERIMENT

The strains in the edge beam of the model shell were calculated using the simplified
Fliigge method described and summing up the Fourier series (II) using values of N = I,
3, 5, 7. The results were in excellent agreement with the measured values in the centre half
of the shell. The addition of the corner correction took the agreement to the outer portion
of the edge beam. This is shown in Fig. 7.

A further check on the method was made by analysing a shell with a rectangular edge
beam and comparing the results with a finite element program [6]. Good agreement was once
more obtained as is seen in Fig. 8. The handling of the corner correction in this case is shown
in the appendix.

1·0

02 -

15

Fig. 7. Comparison of theory with model.
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Fig. 8. Comparison of theory with finite element analysis.
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AficTJHlKT - ):(JIli rrepeKpbITHH B <l>opMe I.\RJIHH,1\PH'IecKOH 060JIO'lKH Onpe,1\eJIlieTCli HOBoe
xapaKTepHCTH'IecKoe ypaBHeHHe, BMeCTe c MeTO,1\OM rrOJIY'!eHHlI pemeHHlI Hero rrpOH3BO,1\HbIX.
TIpHMeHlIeTC» rrpe,1\BapHTeJIbHOe HaTlilKeHHe 60pTOBOH 6aJIKH rrocpe,1\CTBOM C,1\BHrOBbIX
YCHJIHn, KOTopble H3MeHlIIOTCli JIlmeHHO OT MaKcHMyMa B MecTe rrorrepe'lHott 6aJIKH K HYJIro
B '1eTBepTH rrpOJIeTa. ):(JI» )Toro CJIy'lali Pll,1\ <l>ypw CXO,1\HTCB 6blCTpO. ):(aJIee rrpHBO,1\HTCli
KpaeBali KOppeKTHpoBKa C ueJIbIO 06paTHOH rrepe,1\a'lH rrpe,1\BapHTeJIbHOrO HaTBlKeHHB K
KpaIO 6aJIKH H rrOJIY'!eHlfli COBMecTHOCTH ,1\e<l>opMaUHH Ha KpaIO 060JIo'lKH. CpaSHHSaeTCB
MeTO,1\ C JKCnepHMeHTaJIhHbIMH pe3YJIbTaTaMH Ha MOI\eJIH 060JIO'l1<H H C pe3YJIbTaTaMH
nporpaMMbI KOHe'lHOrO JJIeMeHTa.

APPENDIX

Analysis of shell with post tensioned rectangular edge beams (Fig. 9.)

P 500 kips

L J20 ft A = 2 sq ft

R 30 ft

h 0·25 ft

4>K = 40° = 0·698 rad.
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1~-24-~~

~;"

Fig. 9. Rectangular edge beam.

P = Ee(A + RhcPK7(7) = EA(2 + 0'087)

= Ee x 2'087 = 500 kips.

At corner

Nx = hEe = 0'25 x 500(2'087 = 60 kips(ft.

This edge correction will diminish with ¢ to the 6th power of ¢(¢K as follows

1051

Factor

0·9

0'531

0'8

0·262

0·7

0·118

0·6

0·047

0·5

0·016

0'4

0'004

It will also diminish parabolically back to zero at the 1(4 points of the shell.
The Nx values obtained from (8) are as follows:

N x Nx

N PH kips eP = 40 eP = 36°

1 604·56 -52,292 -39'773
3 -130'50 10·931 7'572
5 28'19 -2'243 -13-321
7 -1,76 0·141 0·069
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Sum Edge Sum Edge
Fourier correc- Total Fourier correc- Total
series tion </> = 36° series tion </>= 40°

Traverse 0 31·860 31-860 0 60·000 60·00
17·002 14·160 31·162 23·566 26·666 50·232
28·090 3·540 31·630 38·127 6·666 44·793

1/4 pt. 32-487 0 32·487 43'020 0 43'020
33'351 0 33'351 43-466 0 43-466
33-427 0 33-427 43-398 0 43'398

Ii 33-464 0 33·464 43-463 0 43-463


