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Abstract—A new characteristic equation for cylindrical shell roofs is developed, together with a
method for obtaining the solution and its derivatives. Post tension is introduced into the edge
beam by shearing forces varying linearly from a maximum at the transverse to zero at the
quarter points. The Fourier series for this converges rapidly. An end correction is then made to
restore the post tension to the end of the edge beam and obtain compatibility of strain with the
shell edge. The method is compared with experimental results on a model shell and with the
results of a finite element program.

NOTATION
u, v, w Longitudinal, circumferential, radial displacements, ft
N:, Ny, S longitudinal, circumferential, shearing forces, 1b/ft
Ex, Eg, Vo longitudinal, circumferential, shearing strains
M,, My, M., longitudinal, circumferential, twisting moments, 1b

Q:, Os normal shearing forces, 1b/ft

Ve normal force at edge, Ib/ft

x(ft), ¢ (rad) longitudinal, radial coordinates,

a angular rotation of shell, rad

R L K radius, length, thickness of shell, ft

half angle of shell, rad

Young’s modulus, Ib/ft?

Poisson’s ratio

flexural rigidity of shell, 1b ft

integer in Fourier series term

NmR/L

parametric constants

12(1 — v?)R?/h?

a root of the characteristic equation

(ft?), 7 (ft*) area, moment of inertia of edge beam
post tension load in edge beam, b
torque on edge beam, Ib fi
force at springing due to shear, Ib.

frizos e

il BT

INTRODUCTION

Cylindrical shell roofs are used to provide an economical way of covering large areas
without intermediate supports. The first cylindrical shell of the type shown in Fig. 1 was
built in Germany in 1925. The number of these structures now in existence is very large.

The shell is constructed in reinforced concrete about three inches thick. This gives
sufficient cover to protect the reinforcement. The main loading is the self weight of the shell
and a layer of snow. Wind blowing across the shell produces a uniform uplift and can
normally be neglected.
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Fig. 1. Cylindrical shell roof.

Edge beams are provided to stiffen the edges of the longer shells and these edge beams are
frequently post-tensioned to reduce the amount of reinforcement required in the shell.

The traverses are thin and the assumption that they do not present any resistance to
horizontal movement enables a linear differential equation to be developed for the deflection
of the shell. Fliigge[1] has developed this differential equation with the minimum of approxi-
mation. As he points out, the mathematical manipulation of such a system is far from
simple. The roots of the auxiliary equation arising from Fliigge’s equation are difficult to
extract accurately and the force-deformation relations are very complicated.

This paper shows how Fliigge’s equation can be simplified without serious loss of accuracy
using Ferrari’s method for the solution of a quartic. The simplified equation has explicit
roots which can be readily employed in the design of shell roofs.

The gravity loading of a cylindrical shell roof can then be handled on a small digital
computer by using a sufficient number of terms of the Fourier series for the loading.

Attempts have been made to determine the stresses due to post-tension in a similar
manner[2]. However in this case the errors increase with the number of terms employed.
The difficulty is due to the assumption that the traverses cannot transmit any of the post-
tension directly to the shell. Compatibility of strain between the edge beam and the shell
becomes impossible to obtain close to the traverses. When the assumption is abandoned it
becomes possible to handle the post tension in an economical manner.

THEORETICAL ANALYSIS

The characteristic equation

In a cylindrical shell the displacements vary with both x and ¢. It will be assumed that the
shell does not move radially at the traverses. It will also be taken initially that the traverses
offer no resistance to horizontal displacement. The differential equation of the shell can then
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be handled by taking the radial displacement as

w = AeP? cos mx/R
where
m = NnR/L.

All forces and displacements in the shell then appear in terms of a Fourier series in x.
The auxiliary to Fliigge’s equation becomes

(p* —mH* + 4m*K* + 2p° + Fp* + Gp* — 2vm* =0 (1)
where
4K* = 12(1 — V)R
F=1-2(4-vm*
G = 6m* — 22 — vym’.

The auxiliary is a quartic equation in p* and the coefficients can be tabulated as follows:

r® r° r* r* 1
1 —4m? +6m* —4m® m®
2 +F +G +4m* K*
—2mb v
1 2a b 2c d

What happens next can best be shown by putting in numbers for a typical case. Using the
dimensions of Gibson’s long shell[3], R=301ft, k=025 ft, L =120 ft and v =015, and
taking the first term of the Fourier series N = 1, m = 7/4 and 4K* = 168912.

The table then becomes

Pt e r* r? 1
i —2-4674 +2-2830 —0-9388 +0-1448
+2 — 3-7497 +0-0006 +64271-185
—0-0704
1 —0-4674  ~14667  —09382 64271259

To solve the quartic
P+ 2ap® + bp* +2cp* +d =0
it will be assumed possible to express it as the difference of two squares

(p* +qp* +1)* ~ (sp* + 1> =0 )
or
P2+ 2qp° + (g7 + 2r + sMp* + 2(gr — sOP? + (r? — 1*) =0.
On comparing coefficients
g=a; q*-2r—s*=b;
gr — st = ¢; rP—1?=d )
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Eliminating 5 and ¢ and substituting for ¢ we obtain the cubic equation
3 b 2 2 2
ri-sr + (ac — d)r + t[d(b — a*) — ¢*] =0. 4

Putting in the numbers for our typical case the cubic becomes
r3 +0-7335r% — 64271-1497r — 48882214 =0 (5)

d is much larger than the other numbers in equation (4) and assuming that r has a small real
value it is evident from inspection that r will be very nearly equal to (b —a)* or
—(0-760668. Evaluating (5) on a desk computer for trial values of r shows that the correct
value of r is —0-760671.

Now (2) can be expressed as:

(" +ap* +r) +(p* + ) =0

and

(P +ap* +r) —(sp* +1) =0
or

P+ + 0+ =0
and

Pr+g—sp* + (-1 =0 ©

Transposing (3) it is found that ¢ = \/(r? — d) = 2m*K?i as r? is negligible compared with
d which is very nearly equal to 4m*K*. 5 = (gr — c)/t which is very small compared with ¢,
and r? is very small compared with t.

The two quadratic equations in p? (6) then reduce to:

pr+ap’ +1=0
ptHap*—t=0

-+
o)

The imaginary part under the square root is much larger than the real so that

hence

o=

[SS R~

MR

P = _g +mK(J2i) = =% + m* + mK(£1 % 0). Q)

This can be compared with the roots for Schorer’s equation:

pP=mK(xl %)
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and with those of the widely used D.K.J. equation:
pt=m?+ mK(+1 +i). [4]

It will be seen that for long shells, i.e. where m? < 1/2 the roots of Schorer’s equation are
more accurate than those of the D.K.J. equation.

If the factors in Table 1 that do not contribute towards (7) are eliminated we are left with
the auxiliary equation:

p® —4m?pS + 2p® + 4m*K* =0
which corresponds to the dimensional characteristic equation

®w o%w o%w o*w

W+4RZW+2W+4K4R4-6?=O- )
Before (8) can be used in design it is necessary to find the force-deformation relations cor-
responding to it. This was done by working back through Fliigge’s calculations and leaving
out any terms that did not lead to the desired characteristic equation.

It appeared that M, could be neglected as in Schorer’s equation but not the twisting
moment. That g, could be considered small compared with w/R and dv/R 0¢ but that
7x¢ could not be neglected when compared with du/R 0¢ and dv/dx. Other approximations
leading to the desired result were the ignoring of vN¢ compared with N, in the calculation of
D —v) *w

R O¢ox
the inclusion of first and second order terms and the neglect of higher order terms.

&, the taking of M, as and M, as — DX, . In general the method leads to

X, 0
2w
M
s
dx
Ny = N+

o
&

S+

. N¢+

Fig. 2. Statics of element.
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From the statics of the element in Fig, 2
" RIp  ox
ade)
R$
80, RAQ,
a¢ ox
P*M M
==ty
R ¢ d ox
3S _ @éN, L9
dx  Rép R
oM, 20°M,, . oM,
" R?0¢> Rp*dx  RP o

Qs

Qx:

Ny =

oN, 128
dx R

N, 10 6S)
dp* R (6x

LM, 2 M, 1 M,
= - — + —_— — e .
R® 0¢*  R*6¢>ox R® ox

The force-deformation relations are:

Y D (OZW+ )

=——=|l=—+w

¢ R? ad)l

_D(l—v) P*w

~ R dpox
du N,

e, = - = —

Y 0x Eh

Mtd)

this is considered small compared with the separate components on the R.H. side which are
due mainly to bending
av
"%
ou v S 2(1+v)
= — —_— = S
"= Rap  ax Gh  Eh
o'w v (14v) 'S ou
ax* opox* ~ Eh 0 ox* R OP? ox3
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1 u 1 &N,
Rop? 0x* EhR d¢* ox?
6 6 4
1 { 6M¢ 28Mx¢ 6M¢}

TEhR\ B¢ R iptox R og
Dl (af‘ 2@6 )+2(1-v) Bw }
“’EhR{RS a¢8 a¢® RY  3¢° ox?

Bw _ Ow a8 12(1 — v?)RS o*w
—ﬁs 6+4R2 6w2+ ( zV) —?::0.
o aqs 0¢° ox h ox

This is the same equation as (8).
The radial deflection in the shell will now be taken in the form

w = W cos mx/R = W cos Nnx/L

where W is a function only of ¢.

The deformations and forces at the centre of the shell where x = 0 can be expressed as
derivatives of W with respect to ¢. The values elsewhere can be obtained by multiplying by
cos mx/R

o:de(;;

455

D (d*W
== (G v)

dM, D (d*w daw
V¢=Q¢—“&x—¢=—"{d¢3 + - 2(1—")?”2]35}
D d’*W da*w
A D (d°W &w
D d°w
o= {d¢6 + 2201 — vm?] d;‘/} ©)

Now W = Ae"® where A and p have eight complex values. Before we can tackle the design
of the shell roof we have to be able to extract W and its derivatives in terms of real constants
and quantities. A simple method of doing this will now be outlined.

TO OBTAIN THE DERIVATIVES OF A SOLUTION TO A
LINEAR DIFFERENTIAL EQUATION

Two terms of the solution will be taken in the form:
W = AleP1¢ + AZ ep2¢
where

=ﬁ+a£ pzzﬁ“‘ai.
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Then
d"W/de" = A,p,"e"'® + A4, p,"eP*?,
It is always possible to express 8 as & cos 6 and « as k sin . Now

e = cos agp + i sin ag
and
(k cos 0 + ik sin 0)"* = k"™(cos n@ + i sin nf)

from DeMoivre’s theorem.
d"W/d¢" = A (B + ai)'eP?e™? + A,(B — ai)'ePte ¢
= A,X"(cos n@ + i sin nf)e’?(cos ad + i sin ag)
+ A, k"(cos nf — i sin nf)e?*(cos agp — i sin ag)
= k"P{[(A4, + A,)cos nf + (A4; — A,)i sin nlcos ad
+ [=(A, + Ay)sin nf + (A, — A,)i cos n8sin ag}.
Putting A, + A, = Cl and (4; — 4,)i = C2
d"W/d¢" = k"eF4{(C1 cos nf + C2 sin nf)cos ag + (— C1 sin nd + C2 cos n)sin o}

In matrix form this is conveniently put as

. so| cosag sinag [ C1
k"[cos nf sin nBle {»—sin b cos aq&] {CZ or A.B.C.

where 4 depends on the order of the derivative, B the angular position in the shell, and Cis
the vector containing the constants of integration.

DEVELOPING THE PROGRAM
The roots of the simplified Fliigge equation form two sets

() p*=~1+m*+mK+mKi=RIl+mKi
2 p*= -1+ m* —mK+mKi=—R2+ mKi.
We shall take first the first set with the positive imaginary part.
k,%(cos 20, + isin 20,) = R, + mKi
tan 28, =mK/R, or 0, =4 arctan(mK/R1)

ky* cos? 20, = R,?
k,* sin® 20, = m*K?
k* =R+ mK?

ky = ¥(R? + m*K?).
Taking now the second set with the positive imaginary part

tan 20, = —mK/R, o, 8, = ¥(zm — arctan mK/R,)
ky = /(R* + m*K?).
Then
By =k, cos b, «, =k, sin 8,
B, =k,cos8, oy =k,siné,.
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The matrices for the derivations can now be set out as follows:

A will be an 8 x 8 matrix with rows corresponding to the n values required (—1 to 6)
and columns having the values

k"cosn, k"sinnf, (—k,)cosuf, (—k)sinnb, k,"cosnd,

B will also be an 8 x 8 matrix as follows

B, 0 0 0
o) B,
0] O B,
0 0] B,
B, =e®*[ cosa,¢ sin al@"}
| —sina, ¢ cosa @

—~g,61COS & —sin o
Bz =g P19 ™ 1¢’ 1¢ , etc.
sin oy ¢ cos a; ¢

C will be a 1 x 8 column matrix containing the eight constants of integration C1 ... C8.
A new 8 x 8 matrix D is now produced, the row number corresponding to the order of the
highest derivative in the expression for the shell displacement or stress. This is done by
employing equations (9).
For j having the values 1-8

1 v
DOj =AOJ w
1
Dy; E(A1j+A—1,) a
D
Dy =~— =z (ai + Ao M,
D
D3j=—§§(A3j+K1A1j) Vy
D
D4J:F(A4J+K1A21) Nd’

D
Ds;= = (ds;+ Ky Ay))  dSfdx

D
D61=_W(A61+K2A4}) Nx
where

K =1-2(1 - v)m?
and

K, =2-2(1 - vym?.
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STRESSES DUE TO POST-TENSIONING
The handling of the gravity loading of the shell is too well known to require repetition
{2, 5]. However the usual method of replacing the post tension by the Fourier series

4P = I . Nm Nnx
— Y —sin — cos — (10)

leads to serious difficulties.

This is due to the shear at the edge of the shell being proportional to the rate of change of
the force in the edge beam, or the differential of (10) which can be seen to oscillate with
increasing number of terms near the centre of the shell and diverge near the traverses
(Fig. 3a).

A more satisfactory series is obtained by assuming that the post tension is fed into the
edge beam by shearing forces decreasing linearly from the traverse to the quarter points.
This produces the parabolic distribution of post tension shown in Fig. 3(b).

The Fourier series for this is

Nrnx x 128P [ . Nm . Nn Nnx

Y Py COSTWN=1,3,5...(W (smT— sin T)cos - (n

Four terms of this series summed up on a desk computer showed almost perfect agreement
with the curve chosen and can be differentiated without much loss of accuracy.

ol TN\ P
N N

4 terms of (10}

t/2 Vs ot 0

4 terms of (1)

L2 lq Pt o
(b)

Fig. 3. Fourier series for post tension.
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ANALYSIS OF SHELL WITH TUBULAR EDGE BEAM

The theory was tested on the model shell with a tubular edge beam described in the next
section. In this special case the stresses and deformations are produced only by the post
tensioning, there being no gravity loading on the shell. The boundary conditions for the
model shell can be expressed fairly simply as follows:

The B matrix is calculated for the right hand edge. This is multiplied by the D matrix to
give matrix E (8 x 8) which relates to the shell displacements, moments and forces for the
right hand edge when multiplied by the C vector. The numerical values for the boundary
conditions are put in the G vector.

The four boundary conditions for the right hand edge can then be put into the first
four rows of matrix F (8 x 8) and vector G (8 x 1) as follows:

(1) The rotations of the shell edge and the edge beam are equal. Reference to Fig. 4(a)
shows that

v Nnx
i (M, + bNy)cos —
da _ T
dx  GJ

1 Nrnx
a= reTi H (M4 + bNy)cos < dx dx

—(L)2 : (M, + bN, t x=0

Then for j having values from 1 to 8

L\? 1
Fiu=Ej—\§.) o7 2t 0By
Gl =0.

(2) The radial displacements w of the shell and the edge beam are equal. Reference to
Fig. 3(d) shows that

dt = Sdx
ds
tzﬂadxdx at x=0

__(L)st
- Nr) dx’

d*w Nnx
s = Vecos T

d?w L\? Nrx
M=—Fl— = _{ =
oz { ( Nn) Ve + tb}cos 3

o1 (L)Z{ L)ZV o L 248
=S TE M) \va) Yot (Fn) &Tc}

1 (L\*
Fay=Eoj t 37 (FV;) {E3; + bEs;}

G2 =0.

For the edge beam
—EI

1JSS Vol. 10 No. 9—H
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I T+d7T

g

M
x dx
ve
(

S S VI
1
s

{a)

{b}
(c)

tid# (d)

X dx

Fig. 4. Element of tubular edge beam.

(3) The tangential displacements v of the shell and the edge beam are equal.

d* Nnx
E[a—z=~N¢COS—L~
1 L\
=——{=\ N =0
v EI(Nﬂ) , at x
1 /L

F312E_1}+§(m) E4j
G3=—“0.

(4) The longitudinal strains of the shell and the edge beam are equal. The strain in the
edge beam is

t— Py
EA
due to the longitudinal force. The strain in the edge beam at the springing due to bending is

2 N 2
-bg—gxb(g) w at x=0.
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The strain in the shell at the springing is
! (N, — vN,)
EI" ¢

1 1 (L\? Nm\?

G4 = "PN/EA

The B matrix is then recalculated for the left hand edge. A new E matrix is produced by
multiplying B by D. The second half of the F and G matrices can then be filled in a similar
manner to the first, making allowance for some sign differences.

The eight simultaneous equations represented by FC = G are solved to find the integration
constants C. The shell stresses and displacements can then be calculated from D.B.C., the
change in angular position modifying only B.

CORRECTION AT CORNERS OF PRESTRESSED SHELL

The boundary conditions assumed in the foregoing analysis imply that N, is zero at the
traverses. This means that compatibility of strain cannot apply at the ends of the edge
beam where the strain is the greatest.

It is evident that the traverses can transmit some of the post tension and this is allowed
for in the following correction which is added to the previous solution.

It will be supposed that the post tension is returned to the corners of the shell by applying
shear forces S1 to the edge beam and S2 to the shell edge, both varying linearly from the
quarter points to the traverse. These will produce the parabolic variation of longitudinal
stress shown in Fig. 5 and will be apportioned to retain compatibility of strain.

B — x
84
N

P . -
Si Beom
——— hell
ffgi 5 s
L
!
1
Traverse 94{91'
Py
P
Py

Fig. 5. Correction at corners of shell.
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The characteristic equation of the shell will be taken in its simplest form:

B Ctu

— HAKARY = 2
e A=l (12)

X

The longitudinal strain du/dx will vary with x?
Mufoxt = 0.
Equation (12) then reduces to 6%4/0¢® = 0. Then

au . 7 [ 5 2
e =(Cip" + C,0° + C3 07 ... Cy)x?.

Assuming symmetry about the §,.f(¢) = /(—$)and C1, C3, CS, C7 are zero. If the traverse is
fairly flexible in the x direction the forces produced by the end correction will die away
rapidly from the edge. It is also clear that only compatibility of strain with the edge beam is
of importance. The solution to (12) will then be taken as

ufox = C, pox2, (13)
If ¢ is the longitudinal strain at the corners of the shell

N, = Eh¢®cl6x?/L? = Ehedp® at x = L/4.

Then
SR
P, = [ N, Rdp = EhRed, 17

P, =FE4e at x=1Lj4
Then
P = Ee(A + Rhy'/7) (14)

from which &, P1 and P2 can be calculated.

EXPERIMENT

A small steel model shell roof was constructed as shown in Fig. 6. Tubular edge beams
were soldered on to the edges of the shell. A steel rod was passed through one of the edge
beams and stressed by means of nuts screwed on the ends. Buckling was avoided by fixing
the tendon at the centre with set screws. The strains along the edge beam were measured
with eight pairs of Huggenberger tensometers.

The magnitude of the post tension was obtained from the strain of those portions of the
edge beam that extended beyond the shell.
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Fig. 6. Model steel shell with tensometers L =36 in., R= 12 in., A= 0-031 in. Half angle
qSK = 40°, A — 002112 in3, b=01715in.

COMPARISON OF THEORY WITH EXPERIMENT

The strains in the edge beam of the model shell were calculated using the simplified
Fliigge method described and summing up the Fourier series (11) using values of N =1,
3, 5, 7. The results were in excellent agreement with the measured values in the centre half
of the shell. The addition of the corner correction took the agreement to the outer portion
of the edge beam. This is shown in Fig. 7.

A further check on the method was made by analysing a shell with a rectangular edge
beam and comparing the results with a finite element program[6]. Good agreement was once
more obtained as is seen in Fig. 8. The handling of the corner correction in this case is shown
in the appendix.

18 15 12 9 6 3 el
Length, inch

Fig. 7. Comparison of theory with model.
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f 1 ! i i

Phom lam ———
Rish e

~40 4 e S T e e =] a0

kips /ft,

Ner

Traverse

>

60 30 0
Length, ft

Fig. 8. Comparison of theory with finite element analysis.
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AGcrpaxt — [Inst mepekpbiTHii B GopMe IHWITHHAPHYECKOH OOOJIOYKHM ONpenessercs HOBOE
XapaKTEPHCTHYECKOE YPABHEHHE, BMECTE ¢ METOIOM ITOJIy4EHHS PEIICHHA B €10 IIPOR3BOIKBIX.
IpuMeHseTCs MpeNBapHTEIbHOEe HATHXeHHEe OopToBON OajKM IOCPENCTBOM COBHIOBBLIX
YCHIHE, KOTODBIE H3MEHSIOTCH JIMHEHHO OT MAKCHMyMa B MECTE MOTEpeyHol GanKkH K HyJIO
B werBepTH nponera. Jna aroro caydas pan $ypee cxoautes Gvictpo. [danee npuBomHTCH
KpacBas KODPEKTHpPOBKA ¢ Hensio oOparHOM mepedady TNPEABAPHUTEILHOTO HATMKCHHA K
Kpawo GaJKH W TOAYHEHHS COBMecTHOCTH Acdopmanmy Ha Kparo obGonouxd. CpasmauBacTcs

METOA € IKCOCPEMCHTANBHBIMY DE3YNbTATAMH Ha MOIOCHH o0ONMOUKE ¥ ¢ PE3yAbTaTaAMH
OporpaMmbl KOHEHHOTO 3ACMEHTA.

APPENDIX

Analysis of shell with post tensioned rectangular edge beams (Fig. 9.)

P = 500 kips

L =120ft A=2sqft
R =301t

h =025 ft

¢y = 40° = 0-698 rad.
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Y

—~/+——— 12 in.

—
500 kips

Fig. 9. Rectangular edge beam.
P = Ee(A + Rhoy'[T) = EA(2 + 0-087)
= Fg¢ x 2:087 = 500 kips.
At corner
N, = hEe = 0-25 x 500/2-087 = 60 kips/ft.

This edge correction will diminish with ¢ to the 6th power of ¢/¢y as follows

bl I 09 08 0-7 0-6 05 0-4
Factor 1 0531 0262 0118 0047 0016  0-004

It will also diminish parabolically back to zero at the 1/4 points of the shell.
The N, values obtained from (8) are as follows:

N N,
N Pykips $ =40 $=36°
1 60456 —52292 39773
3 —130-50 10:931 7572
5 2819 —2:243 ~13:321
7 176 0141 0-069
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Sum Edge Sum Edge
Fourier correc- Total  Fourier correc- Total
series tion ¢ =36° series tion ¢ =40°
Traverse 0 31-860 31-860 0 60-000  60-00
17-002 14-160 31-162 23-566 26666 50-232
28-090 3-540 31-630 38127 6-666 44-793
1/4 pt. 32487 0 32-487 43-020 0 43-020
33-351 0 33:351 43-466 0 43-466
33-427 0 33-427  43-398 0 43-398
¢, 33-464 0 33-464 43-463 0 43-463




